If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24k^2+31k=0
a = 24; b = 31; c = 0;
Δ = b2-4ac
Δ = 312-4·24·0
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{961}=31$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(31)-31}{2*24}=\frac{-62}{48} =-1+7/24 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(31)+31}{2*24}=\frac{0}{48} =0 $
| 46=-56+6x | | x/11=-4/121 | | 7x+6/3-9=-13 | | c=3.14/18 | | c=3.1418 | | 9x+5+6x+26=0 | | -10=-x/4 | | c=3.14/23 | | 70=-9x-47 | | 2x+5=-77 | | 12d+6=18+-48-9d | | -(x+0.5)-5/2=-18 | | 6v^2-60v-144=0 | | -9(x-10)+14x=75-10 | | 5(2x-7)=4x-3(4x-7) | | 14b-10=7b+40 | | (4y-9)=5y | | B+4b-2b-2b=12 | | 9x^2+1=x-5 | | 3x-6+4x-3=3x+12-2x | | 3(m+3)=16.5 | | 6x+10=2x-12 | | n+5=5n-n | | 3/5h=6/8 | | 2=-7x+2(5x-14) | | 23=6a-15 | | 125=25^-x+4 | | -7x^2+4x=1-3x^2 | | 17=-5x+7(-x-13) | | 0.7n-15n=2n-8-0.4n | | 1/7x+3/4=11/8 | | x(2x+25)=62.5 |